Tag: standard equation of an ellipse

Questions Related to standard equation of an ellipse

The arrangement of the following conics in the descending order of their lengths of semi latus rectum is
A) $ 6= r (1 + 3\cos \theta )$
B) $10= r (1 + 3\cos \theta )$
C) $8= r (1 + 3\cos \theta )$
D) $12= r (1 + 3\cos \theta )$

  1. $D, A, B, C$

  2. $B, C, D, A$

  3. $D, B, C, A$

  4. $A, C, B, D$


Correct Option: C
Explanation:

Comparing given equation with standard equation $r(1+e\cos\theta)=l$ where $l$ is semi latus rectum
Hence order is $D,B,C,A$

The focal chord of a conic perpendicular to axis is 

  1. Tangent

  2. Vertex

  3. Focal distance

  4. Latus rectum


Correct Option: D
Explanation:

A perpendicular from a point on the conic to the axis is called an ordinate, and if produced to meet the conic again it is called a double ordinate. The double ordinate through the focus is called the $latus\ rectum$.

The locus of a planet orbiting around the sun is: 

  1. A circle

  2. A straight line

  3. A semicircle

  4. An ellipse


Correct Option: D
Explanation:

It is a fact & proof of it can be seen from higher education physics books

The sum of the focal distances of a point on the ellipse $\cfrac { { x }^{ 2 } }{ 4 } +\cfrac { { y }^{ 2 } }{ 9 } =1$ is:

  1. $4$ units

  2. $6$ units

  3. $8$ units

  4. $10$ units


Correct Option: B
Explanation:

The sum of focal distances from a point of ellipse is 2 times the major axis.
For the given ellipse , length of semi major axis i.e. $b$ is $3$.
So required length $=2\times 3=6$
Option B is true

Equation of the ellipse in its standard form is $\displaystyle \frac{x^2}{a^2}-\frac{y^2}{b^2}=1$

  1. True

  2. False

  3. Nither

  4. Either


Correct Option: B
Explanation:

Equation of ellipse in standard form is 

              $\dfrac { { x }^{ 2 } }{ a^{ 2 } } +\dfrac { { y }^{ 2 } }{ { b }^{ 2 } } =1$
False

The focus of extremities of the latus rectum of the family of the ellipse  ${b^2}{x^2} + {a^2}{y^2} = {a^2}{b^2}{\text{ is }}\left( {b \in R} \right)$ 

  1. ${x^2} - ay = {a^3}$

  2. ${x^2} - ay - {e^2}$

  3. ${x^2} \pm ay = {a^2}$

  4. ${x^2} + ay - {b^2}$


Correct Option: A

The equation of the latusrecta of the ellipse $9x^{2}+4^{2}-18x-8y-23=0$ are 

  1. $y=\pm \sqrt {5}$

  2. $x=\pm \sqrt {5}$

  3. $y=1 \pm \sqrt {5}$

  4. $x=1 \pm \sqrt {5}$


Correct Option: C
Explanation:

equation of ellipse is ${ 9x }^{ 2 }+{ 4y }^{ 2 }-18x-8y-23=0$

$\Rightarrow (9x^{ 2 }-18x+9)+(4y^{ 2 }-8y+4)-23-9-4=0$
$ \Rightarrow 9(x-1)^{ 2 }+4(y-1)^{ 2 }=36$
$ \Rightarrow \cfrac { (x-1)^{ 2 } }{ 4 } +\cfrac { (y-1)^{ 2 } }{ 9 } =1$
So, equation of latus recta is $(y-1)=\pm be$
$y=1\pm \sqrt { b^{ 2 }-a^{ 2 } } \Rightarrow y=1\pm \sqrt { 5 } $

The foci of the ellipse $\dfrac{x^{2}}{16} + \dfrac{y^{2}}{b^{2}} =1$ and the hyperbola $\dfrac{x^{2}}{144} - \dfrac{y^{2}}{81} =\dfrac{1}{25}$ coincide, then the value of $b^{2}$ is:

  1. $5$

  2. $7$

  3. $9$

  4. $4$


Correct Option: B
Explanation:

The foci of the ellipse are also the foci of an hyperbola,
then we have, for the ellipse,

$a^2 -c^2 = b^2$
so
$16 -c^2 = b^2...............(1) $
 
Equation of Hyperbola can also be written as $\dfrac{x^2}{\dfrac{144}{25}}-\dfrac{y^2}{\dfrac{81}{25}}=1$

For the hyperbola, which must have its transverse axis on the x-axis, the equation
$c^2 - a^2 = b^2\Rightarrow c^2-\dfrac{144}{25}=\dfrac{81}{25}\Rightarrow c^2=\dfrac{225}{25}=9$

Putting this value in equation (1)
$16-9=b^2\Rightarrow b^2=7$

If foci are points $(0,1)(0,-1)$ and minor axis is of length $1$, then equation of ellipse is

  1. $\dfrac { { x }^{ 2 } }{ 1/4 } +\dfrac { { y }^{ 2 } }{ 5/4 } =1$

  2. $\dfrac { { x }^{ 2 } }{ 5/4 } +\dfrac { { y }^{ 2 } }{ 1/4 } =1$

  3. $\dfrac { { x }^{ 2 } }{ 3/4 } +\dfrac { { y }^{ 2 } }{ 1/4 } =1$

  4. $\dfrac { { x }^{ 2 } }{ 1/4 } +\dfrac { { y }^{ 2 } }{ 3/4 } =1$


Correct Option: A
Explanation:

Given that focii are $(0,1), (0,-1)$


Axis lies along $y-axis$

Distance between focii$\rightarrow 2be=2$

$\Rightarrow be=1$

Given that $2a=1$

$\Rightarrow a=\dfrac{1}{2}$

We know that $\Rightarrow e^2=1-\dfrac{a^2}{b^2}$

$\Rightarrow b^2e^2=b^2-a^2$

Substituting above obtained values in this expression we get,

$\Rightarrow 1=b^2-(\dfrac{1}{2})^2$

$\Rightarrow 1=b^2-\dfrac{1}{4}$

$\Rightarrow b^2=\dfrac{5}{4}$

Thus equation of ellipse$\Rightarrow \dfrac{x^2}{\dfrac{1}{4}}+\dfrac{y^2}{\dfrac{5}{4}}=1$

The equation of the ellipse with its focus at $(6, 2)$, centre at $(1, 2)$ and which passes through the point $(4, 6)$ is?

  1. $\dfrac{(x-1)^2}{25}+\dfrac{(y-2)^2}{16}=1$

  2. $\dfrac{(x-1)^2}{25}+\dfrac{(y-2)^2}{20}=1$

  3. $\dfrac{(x-1)^2}{45}+\dfrac{(y-2)^2}{20}=1$

  4. $\dfrac{(x-1)^2}{45}+\dfrac{(y-2)^2}{16}=1$


Correct Option: C