Tag: standard equation of an ellipse

Questions Related to standard equation of an ellipse

The graph of the equation $x^2+\dfrac{y^2}{4}=1$ is

  1. an ellipse

  2. a circle

  3. a hyperbola

  4. a parabola

  5. two straight lines


Correct Option: A
Explanation:

Given, ${x}^{2}+\dfrac{{y}^{2}}{4}=1$
It is in the form of  $ \dfrac{{x}^{2}}{{a}^{2}}+\dfrac{{y}^{2}}{{b}^{2}}=1$
Therefore, it represents an ellipse.

The graph of the equation $4y^2 + x^2= 25$ is

  1. a circle

  2. an ellipse

  3. a hyperbola

  4. a parabola

  5. a straight line


Correct Option: B
Explanation:

Given, $4{y}^{2}+{x}^{2}=25$

$\Rightarrow \dfrac { { y }^{ 2 } }{ 25/4 } +\dfrac { { x }^{ 2 } }{ 25 } =1$
It is in the form of ellipse $\left (\dfrac { { y }^{ 2 } }{ {a}^{2} } +\dfrac { { x }^{ 2 } }{ {b}^{2} } =1\right)$
So, the correct answer is option $B$.

Latus rectum of the conic satisfying the differential equation $x dy+y dx=0$ and passing through the point $(2,8)$ is :

  1. $4\sqrt{2}$

  2. $8$

  3. $8\sqrt{2}$

  4. $16$


Correct Option: C
Explanation:

The differential equation is

$xdy+ydx=0$
$d(xy)=0$
By integrating we get,
$xy=k$..........(1)

Equation (1) passes through the point $(2,8)$, so
$(2)(8)=k$
$k=16$

So, equation of the conic is 
$xy=16$
which is a rectangular hyperbola $(xy=c^{2})$, where $c=4$

Length of latus rectum for rectangular hyperbola is $2\sqrt{2}c=8\sqrt{2}$
 





The foci of an ellipse are located at the points $(2, 4)$ and $(2, -2)$. The points $(4, 2)$ lies on the ellipse. If $a$ and $b$ represent the lengths of the semi-major and semi-minor axes respectively, then the value of $(ab)^{2}$ is equal to

  1. $68 + 22\sqrt {10}$

  2. $6 + 22\sqrt {10}$

  3. $26 + 10\sqrt {10}$

  4. $6 + 10\sqrt {10}$


Correct Option: C
Explanation:

The distance between the foci is $6$, so $c = 3$.
The sum of the distance from $(4, 2)$ to each of the foci is the major axis length,
so
$2a = \sqrt {(4 - 2)^{2} + (2 - 4)^{2}} + \sqrt {(4 - 2)^{2} + (2 + 2)^{2}}$
$= \sqrt {4 + 4} + \sqrt {4 + 16} = \sqrt {8} + \sqrt {20}$
$= 2\sqrt {2} + 2\sqrt {5} \Rightarrow a = \sqrt {2} + \sqrt {5}$
Also, for an ellipse,
$b^{2} = a^{2} - c^{2} = (\sqrt {2} + \sqrt {5})^{2} - 3^{2}$
$= 7 + 2\sqrt {10} = -2 + 2\sqrt {10}$.
Thus, we have
$(ab)^{2} = (7 + 2\sqrt {10})(-2 + 2\sqrt {10})$
$= -14 + 14\sqrt {10} - 4\sqrt {10} + 40$
$= 26 + 10\sqrt {10}$.

Which of the following is/are not false?

  1. The mid point of the line segment joining the foci is called the centre of the ellipse.

  2. The line segment through the foci of the ellipse is called the major axis.

  3. The end points of the major axis are called the vertices of the ellipse.

  4. Ellipse is symmetric with respect to Y-axis only.


Correct Option: A,B,C
Explanation:

(A) Midpoint of the line segment joining the foci is called the centre of ellipse: TRUE


(B) Line segment through the foci is called major axis: TRUE

(C) End point of major axis are called vertices of ellipse: TRUE

(D) Ellipse is symmetric with respect to Y-axis only.: FALSE
(Ellipse is symmetric to both x-axis and y-axis)

The equation $2x^2+3y^2-8x-18y+35=\lambda$ represents?

  1. A circle for all $\lambda$

  2. An ellipse if $\lambda < 0$

  3. The empty set if $\lambda > 0$

  4. A-point if $\lambda = 0$


Correct Option: D
Explanation:

Given:

$ 2x^{2} + 3y - 8x - 18y + 35 = \lambda  $

$ 2\left (x^{2} - 4x \right ) + 3 \left ( y^{2} - 6y + 35 \right ) = \lambda  $

$ 2\left (x - 2 \right )^{2} + 3 \left ( y - 3 \right )^{2} = \lambda  $

For $ \lambda = 0 $, then

$ 2\left (x - 2 \right )^{2} + 3 \left ( y - 3 \right )^{2} = 0  $

Thus, the point is $ \left ( 2,3 \right ) $.

Hence, the correct option is ‘d’.

The equation of ellipse whose major axis is along the direction of x-axis, eccentricity is $e=2/3$

  1. $36x^2+20y^2=405$

  2. $20x^2+36y^2=405$

  3. $30x^2+22y^2=411$

  4. $22x^2+32y^2=409$


Correct Option: B
Explanation:
$\begin{array}{l} e=\frac { 2 }{ 3 } =\sqrt { \frac { { { a^{ 2 } }-{ b^{ 2 } } } }{ c }  }  \\ \Rightarrow { \left( { \frac { 2 }{ 3 }  } \right) ^{ 2 } }=\frac { { { a^{ 2 } }-{ b^{ 2 } } } }{ { { a^{ 2 } } } }  \\ \Rightarrow \frac { { 4{ a^{ 2 } } } }{ a } ={ a^{ 2 } }-{ b^{ 2 } } \\ \Rightarrow { b^{ 2 } }={ a^{ 2 } }-4{ a^{ 2 } }=\frac { { 5{ a^{ 2 } } } }{ 9 } \to \left( i \right)  \end{array}$
Equation of Ellipse are
$\begin{array}{l} \Rightarrow \frac { { { x^{ 2 } } } }{ { { a^{ 2 } } } } +\frac { { { y^{ 2 } } } }{ { { b^{ 2 } } } } =1 \\ \Rightarrow \frac { { { x^{ 2 } } } }{ { { a^{ 2 } } } } +\frac { { 9{ y^{ 2 } } } }{ { 5{ a^{ 2 } } } } =1\to \left( { ii } \right)  \\ Put\, \, { a^{ 2 } }=\frac { { 405 } }{ { 20 } } \, \, \left( { From\, \, option\, \, in\, \, equation\left( i \right)  } \right)  \\ Then,\, \, { b^{ 2 } }=\frac { { 405 } }{ { 360 } }  \end{array}$
Hence, equation of ellipse is
$ \Rightarrow \frac{{{x^2}}}{{\left( {\frac{{405}}{{20}}} \right)}} + \frac{{{y^2}}}{{\left( {\frac{{405}}{{36}}} \right)}} =  - 1,20{x^2} + 36{y^2} = 405$

Eccentricity of ellipse $\frac{{{x^2}}}{{{a^2} + 1}} + \frac{{{y^2}}}{{{a^2} + 2}} = 1\,is\,\frac{1}{{\sqrt 3 }}$ then length of Latus rectum is 

  1. $\frac{2}{{\sqrt 3 }}$

  2. $\frac{4}{{\sqrt 3 }}$

  3. $2\sqrt 3 $

  4. $\frac{{\sqrt 3 }}{2}$


Correct Option: B
Explanation:
Let ${ A }^{ 2 }={ a }^{ 2 }+1$,  ${ B }^{ 2 }={ a }^{ 2 }+2$    {Here, ${ B }^{ 2 }>{ A }^{ 2 }$}
So, $e=\sqrt { 1-\dfrac { { A }^{ 2 } }{ { B }^{ 2 } }  } =\sqrt { 1-\dfrac { { a }^{ 2 }+1 }{ { a }^{ 2 }+2 }  } =\dfrac { 1 }{ \sqrt { { a }^{ 2 }+2 }  } =\dfrac { 1 }{ \sqrt { 3 }  } $
So,  $\sqrt { { a }^{ 2 }+2 } =\sqrt { 3 } \Rightarrow a=\pm 1$
So, length of lotus return $=2\dfrac { { A }^{ 2 } }{ B } $
Length $=\dfrac { 2\left( { a }^{ 2 }+1 \right)  }{ \sqrt { { a }^{ 2 }+2 }  } =\dfrac { 2\left( 2 \right)  }{ \sqrt { 3 }  } =\dfrac { 4 }{ \sqrt { 3 }  } $

If the latus rectum of an ellipse $x ^ { 2 } \tan ^ { 2 } \varphi + y ^ { 2 } \sec ^ { 2 } \varphi =$ $1$ is $1 / 2 ,$ then $\varphi$ is

  1. $\pi / 2$

  2. $\pi / 6$

  3. $\pi / 3$

  4. $5$ $\pi/ 12$


Correct Option: D
Explanation:

Given $x^2 tan^2 \phi + y^2 \, sec^2 \phi = 1$

$\rightarrow \dfrac{x^2}{(1/tan^2 \phi)} + \dfrac{y^2}{(1/sec^2 \phi)} = 1$
$a = \pm \dfrac{1}{tan \phi} , b = \pm \dfrac{1}{sec \phi}$
and $\rightarrow e^2 = 1 - \dfrac{b^2}{a^2}$
$\rightarrow e^2 = 1 - \dfrac{1/sec^2 \phi}{1/tan^2 \phi} = 1 - \dfrac{tan^2 \phi}{sec^2 \phi}$
$\rightarrow e^2 = 1 - sin^2 \phi = cos^2 \phi$
length of latus rectum 
$(LL') = \dfrac{2 b^2}{a} = 2a (1 - e^2)$
$\rightarrow 2a (1 - cos^2 \phi) = 2a. sin^2 \phi = \dfrac{1}{2} $ (Given)
$\therefore 2. \dfrac{cos \phi}{sin \phi} sin^2 \phi = \dfrac{1}{2}$
$\rightarrow 2 cos \phi \, sin \phi = \dfrac{1}{2}$
$\rightarrow sin^2 \phi = \dfrac{1}{2} $
$\rightarrow 2 \phi = \dfrac{\pi}{6} , \dfrac{5 \pi}{6}$
$\therefore \phi = \dfrac{\pi}{12}$    or 
$\phi = \dfrac{ 5 \pi}{12}$

The curve represented by $Rs \left(\dfrac{1}{z}\right)=C$ is (where $C$ is a constant and $\neq 0$)

  1. Ellipse

  2. Parabola

  3. Circle

  4. Straight line


Correct Option: C
Explanation:

$\begin{array}{l} { { Re } }\, \, \left( { \frac { 1 }{ z }  } \right) =c \ { { Re } }\, \, \left( { \frac { 1 }{ { x+iy } }  } \right) =c \ { { Re } }\, \, \left( { \frac { { x-iy } }{ { { x^{ 2 } }+{ y^{ 2 } } } }  } \right) =c \ \frac { x }{ { { x^{ 2 } }+{ y^{ 2 } } } } =c \ c\left( { { x^{ 2 } }+{ y^{ 2 } } } \right) -{ x }=0 . \end{array}$


Hence, this is represent circle.