Tag: standard equation of an ellipse

Questions Related to standard equation of an ellipse

The locus of the mid points of the portion of the tangents to the ellipse intercepted between the axes

  1. $\dfrac{x^{2}}{a^{2}}+\dfrac{y^{2}}{b^{2}}=4$

  2. $\dfrac{a^{2}}{x^{2}}+\frac{b^{2}}{y^{2}}=4$

  3. $\dfrac{x^{2}}{a^{2}}-\dfrac{y^{2}}{b^{2}}=4$

  4. none of these


Correct Option: A

Eccentricity of ellipse $\frac{{{x^2}}}{{{a^2} + 1}} + \frac{{{y^2}}}{{{a^2} + 2}} = 1$ is $\frac{1}{{\sqrt 3 }}$  then length of Latusrectum is 

  1. $\frac{8}{{\sqrt 3 }}$

  2. $\frac{4}{{\sqrt 3 }}$

  3. $2\sqrt 3 $

  4. $\frac{{\sqrt 3 }}{2}$


Correct Option: A
Explanation:

$\cfrac{x^2}{a^2+1}+\cfrac{y^2}{a^2+2}=1$

Eccentricity of ellipse $=\cfrac{1}{\sqrt 3}$
So, $\cfrac{\sqrt{b^2-a^2}}{a}=\cfrac{1}{\sqrt 3}$
Where ellipse 
$\cfrac{x^2}{a^2+1}+\cfrac{y^2}{a^2+2}=1$
So, here
$\cfrac{\sqrt{a^2+2a^2-1}}{a}=\cfrac{1}{\sqrt 3}$
$\implies a^2=2$
So, equation is 
$\cfrac{x^2}{3}+\cfrac{y^2}{4}=1$
Latus rectum $=\cfrac{2b^2}{a}=\cfrac{2\times 4}{\sqrt 3}=\cfrac{8}{\sqrt 3}$

The equation $\dfrac { x ^ { 2 } } { 10 - a } + \dfrac { y ^ { 2 } } { 4 - a } = 1$ represents an ellipse if

  1. $a < 4$

  2. $a > 4$

  3. $4 < a < 10$

  4. None of these


Correct Option: D
Explanation:

$\dfrac{x^2}{10-a}+\dfrac{y^2}{4-a}=1$

For this equation to represent an ellipse its eccentricity shoule lie between $0$ and $1$.
$\sqrt{1-\dfrac{b^2}{a^2}}< 1$
$0< 1-\dfrac{(4-a)^2}{(10-a)^2} <1$
$0 < (10-a)^2-(4-a)^2 <1$
$0< 84-12a <1$
$0< (7-a)12<1$
$12(7-a)> 0$ and
$12(7-a)<1$
$a< 7$ and $7-a<\dfrac{1}{12}$
$a< 7$ and $a >\dfrac{83}{12}$

If the latus rectum of an ellipse $x ^ { 2 } \tan ^ { 2 } \varphi + y ^ { 2 } \sec ^ { 2 } \varphi =$ $1$ is $1 / 2 $ then $\varphi $ is

  1. $\pi / 2$

  2. $\pi / 6$

  3. $\pi / 3$

  4. $5$ $\pi/ 12$


Correct Option: D
Explanation:

Given $x^2 tan^2 \phi + y^2 \, sec^2 \phi = 1$

$\rightarrow \dfrac{x^2}{(1/tan^2 \phi)} + \dfrac{y^2}{(1/sec^2 \phi)} = 1$
$a = \pm \dfrac{1}{tan \phi} , b = \pm \dfrac{1}{sec \phi}$
and $\rightarrow e^2 = 1 - \dfrac{b^2}{a^2}$
$\rightarrow e^2 = 1 - \dfrac{1/sec^2 \phi}{1/tan^2 \phi} = 1 - \dfrac{tan^2 \phi}{sec^2 \phi}$
$\rightarrow e^2 = 1 - sin^2 \phi = cos^2 \phi$
length of latus rectum 
$(LL') = \dfrac{2 b^2}{a} = 2a (1 - e^2)$
$\rightarrow 2a (1 - cos^2 \phi) = 2a. sin^2 \phi = \dfrac{1}{2} $ (Given)
$\therefore 2. \dfrac{cos \phi}{sin \phi} sin^2 \phi = \dfrac{1}{2}$
$\rightarrow 2 cos \phi \, sin \phi = \dfrac{1}{2}$
$\rightarrow sin^2 \phi = \dfrac{1}{2} $
$\rightarrow 2 \phi = \dfrac{\pi}{6} , \dfrac{5 \pi}{6}$
$\therefore \phi = \dfrac{\pi}{12}$    or 
$\phi = \dfrac{ 5 \pi}{12}$

vertices of an ellipse are $(0,\pm 10)$ and its eccentricity $e=4/5$ then its equation is 

  1. $90x^2-40y^2=3600$

  2. $80x^2+50y^2=4000$

  3. $36x^2+100y^2=3600$

  4. $100x^2+36y^2=3600$


Correct Option: D
Explanation:

Let the equation of the required ellipse be 

$\dfrac { { x }^{ 2 } }{ { a }^{ 2 } } +\dfrac { { y }^{ 2 } }{ { b }^{ 2 } } =1\longrightarrow \left( 1 \right) $
since the vertices of the ellipse are on $y$-axis, so the coordinate of the vertices are $\left( 0,\pm b \right) $
$\therefore b=10\ Now,\quad { a }^{ 2 }=b^{ 2 }\left( 1-{ e }^{ 2 } \right) \ \Rightarrow { a }^{ 2 }=100\left( 1-\dfrac { 16 }{ 25 }  \right) \ \Rightarrow { a }^{ 2 }=36\ $
substituting the value of ${ a }^{ 2 }$ and ${ b }^{ 2 }$ in equation $(1)$
we get, $\dfrac { { x }^{ 2 } }{ 36 } +\dfrac { { y }^{ 2 } }{ 100 } =1\ \Rightarrow 100{ x }^{ 2 }+36{ y }^{ 2 }=3600\ \Rightarrow 100{ x }^{ 2 }+36{ y }^{ 2 }-3600=0$

The equation of the latus rectum of the ellipse $9{x}^{2}+4{y}^{2}-18x-8y-23=0$ are

  1. $y=\pm \sqrt{5}$

  2. $y=- \sqrt{5}$

  3. $y=1\pm \sqrt{5}$

  4. $y=-1\pm \sqrt{5}$


Correct Option: C
Explanation:
$9x^2+4y^2-18x-8y-23=0$
$=(3x-3)^2+(2y-2)^2-13-23=0$
$\Rightarrow \ 9(x-1)^2+4(y-1)^2=36$
$\Rightarrow \ \dfrac {(x-1)^2}{4}+\dfrac {(y-1)^2}{9}=1$
Shifting origin to $(1,1)\Rightarrow x-1=x,\ y-1=y$
$\Rightarrow \ \dfrac {x^2}{4}+\dfrac {y^2}{9}=1$
$a=2,= b=3,\ e^2=1+\dfrac {a^2}{b^2}=1+\dfrac {4}{9}=\dfrac {5}{9}$
$\Rightarrow \ e=\pm \sqrt {\dfrac {5}{9}}+\dfrac {\sqrt 5}{3}$
$\Rightarrow \ $ Focus $=(0,\ \pm be)=(0,\ \pm \sqrt 5)$
$\Rightarrow \ $ latus ractum $\Rightarrow \ y=\pm \sqrt {5}$
Shifting back, $y=y-1$
$\Rightarrow \ y-1=\pm \sqrt {5}$
$\Rightarrow \ y=1\pm \sqrt 5\  \Rightarrow \ (C) $


If there is exactly one tangent at a distance of $4$ units from one of the locus of $\dfrac{x^{2}}{a^{2}}+\dfrac{y^{2}}{a^{2}-16}=1, a>4$, then length of latus rectum is :-

  1. $16$

  2. $\dfrac{8}{3}$

  3. $12$

  4. $15$


Correct Option: A

The equation $\dfrac{x^2}{2-r}+\dfrac{y^2}{r-5}+1=0$ represents an ellipse, if

  1. $r>2$

  2. $r\in \left(2,:\dfrac{7}{2}\right)\cup \left(\dfrac{7}{2},5\right)$

  3. $r>5$

  4. $r<2$


Correct Option: A
Explanation:
Equating the equation of the ellipse with the second-degree equation
$A{x}^{2}+Bxy+C{y}^{2}+Dx+Ey+F=0$ with $\dfrac{{x}^{2}}{2-r}+\dfrac{{y}^{2}}{r-5}+1=0$
we get $A=\dfrac{1}{2-r}, B=0, C=\dfrac{1}{r-5},D=0,E=0$ and $F=1$
For the second degree equation to represent an ellipse, the coefficients must satisfy the discriminant condition ${B}^{2}-4AC<0$ and also $A\neq C$
$\Rightarrow {\left(0\right)}^{2}-4\left(\dfrac{1}{2-r}\right)\left(\dfrac{1}{r-5}\right)<0$
$\Rightarrow -4\left(\dfrac{1}{2-r}\right)\left(\dfrac{1}{r-5}\right)<0$
$\Rightarrow \left(\dfrac{1}{2-r}\right)\left(\dfrac{1}{r-5}\right)>0$
$\Rightarrow \left(2-r\right)\left(r-5\right)<0$
$\Rightarrow \left(r-2\right)\left(r-5\right)>0$
$\Rightarrow r>2$

Distance between the foci of the curve represented by the equation $x=3+4\cos\theta, y=2+3\sin\theta$, is?

  1. $3\sqrt{7}$

  2. $2\sqrt{7}$

  3. $\sqrt{7}$

  4. $\dfrac{\sqrt{7}}{2}$


Correct Option: A

Equation of the ellipse whose minor axis is equal to the distance between foci and whose latus rectum is $10 ,$ is given by ____________.

  1. $2 x ^ { 2 } + 3 y ^ { 2 } = 100$

  2. $2 x ^ { 2 } + 3 y ^ { 2 } = 80$

  3. $x ^ { 2 } + 2 y ^ { 2 } = 100$

  4. none of these


Correct Option: C