Tag: standard equation of an ellipse

Questions Related to standard equation of an ellipse

The equation of the tangent to the ellipse such that sum of perpendiculars dropped from foci is 2 units, is

  1. $y cos3\pi/ 4 - x sin 3\pi /4=1$

  2. $y sin \frac{3\pi}{8}- x cos \frac{3\pi}{8}=1$

  3. $x cos \pi /8 - sin \pi /8=1$

  4. $y cos \frac{5\pi}{8}+x sin \frac{5\pi}{8}=1$


Correct Option: A

An ellipse $\cfrac { { x }^{ z } }{ 4 } +\cfrac { { y }^{ z } }{ 3 } =1$ confocal with hyperbola $\cfrac { { x }^{ 2 } }{ \cos ^{ 2 }{ \theta  }  } -\cfrac { { y }^{ 2 } }{ \sin ^{ 2 }{ \theta  }  } =1$ then the set of value of $'0'$

  1. $R$

  2. $R-\left{ n\pi ,n\epsilon z \right} $

  3. $R-\left{ \left( 2n+1 \right) \cfrac { \pi }{ 2 } ,n\epsilon z \right} $

  4. $R-\left{ \cfrac { n\pi }{ 2 } ,n\epsilon z \right} $


Correct Option: A
Explanation:
Focus of ellipse$=ae=a\sqrt { 1-\cfrac { { b }^{ 2 } }{ { a }^{ 2 } }  } $
$=\sqrt { { a }^{ 2 }-{ b }^{ 2 } } $
$=\sqrt { 1 } $
$=1$
Focus of hyperbola$=a\sqrt { 1+\cfrac { { b }^{ 2 } }{ { a }^{ 2 } }  } $
$=\sqrt { { a }^{ 2 }+{ b }^{ 2 } } $
$=\sqrt { \sin ^{ 2 }{ \theta  } +\cos ^{ 2 }{ \theta  }  } $
$=\sqrt { 1 } $
$=1$
$\therefore $The ellipse and hyperbola will be confocal for $\theta \epsilon R$.

Equation of the ellipse whose axes are the axes of coordinates and which passes through the point $ (-3,1)$ and has eccentricity $\sqrt {\frac{2}{5}} $ is 

  1. $5x^3+3y^2-48=0$

  2. $3x^2+5y^2-15=0$

  3. $5x^2+3y^2-32=0$

  4. $3x^2+5y^2-32=0$


Correct Option: C
Explanation:

We know that equation of ellipse is

 

  $ \dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{y}^{2}}}{{{b}^{2}}}=1 $       …….(1)

Given that

  $ e=\sqrt{\dfrac{2}{5}} $

 $ \sqrt{\dfrac{{{a}^{2}}-{{b}^{2}}}{{{a}^{2}}}}=\sqrt{\dfrac{2}{5}} $

 

Taking square both side and solving , we get


  $ 5{{a}^{2}}-5{{b}^{2}}=2{{a}^{2}} $

 $ {{a}^{2}}=\dfrac{5{{b}^{2}}}{3} $    …….(2)

$\because $ ellipse pass through (-3,1)

Then $x=-3, y=1$

Put in equation (1) we get

  $ \dfrac{{{\left( -3 \right)}^{2}}}{{{a}^{2}}}+\dfrac{{{1}^{2}}}{{{b}^{2}}}=1 $

 $ {{a}^{2}}+9{{b}^{2}}={{a}^{2}}{{b}^{2}} $

 $ \dfrac{5{{b}^{2}}}{3}+9{{b}^{2}}=\dfrac{5{{b}^{2}}}{3}.{{b}^{2}} $

 $ {{b}^{2}}=\dfrac{32}{5} $    (From equation (1) and (2)  )

Put in equation (2) , we get ${{a}^{2}}=\dfrac{32}{3}$

the value of a and b put in equation (1), we get


  $ \dfrac{{{x}^{2}}}{\dfrac{32}{3}}+\dfrac{{{y}^{2}}}{\dfrac{32}{5}}=1 $

 $ 3{{x}^{2}}+5{{y}^{2}}=32 $

This is required equation

S and S' foci of an ellipse. B is one end of the minor axis. If $\angle{SBS'}$ is a right angled isosceles triangle, then e$=?$

  1. $\dfrac{1}{\sqrt{2}}$

  2. $\dfrac{1}{2}$

  3. $\dfrac{\sqrt{3}}{2}$

  4. $\dfrac{3}{4}$


Correct Option: A
Explanation:
We have
$S=(ae,0)\quad S'(-ae,0)and B=(0,b)$
Since it is given that $\angle SBS'=90^o$
Slope of SB$\times$ Slope of S'B$=-1$
$\left(\dfrac{b-0}{0-ae}\right)\times\left(\dfrac{b-0}{b+ae}\right)=-1$
$\left(\dfrac{-b}{ae}\right)\left(\dfrac{b}{ae}\right)=-1$
$b^2=a^2e^2$
But, $b^2=a^2(1-e^2)$
So,
$a^2(1-e^2)=a^2e^2$
$1-e^2=e^2$
$2e^2=1$
$e^2=\dfrac{1}{2}$
$e=\dfrac{1}{\sqrt2}$

The eccentricity of an ellipse is $\dfrac {\sqrt {3}}{2}$ its length of latus reetum is

  1. $\dfrac {1}{2}$ (length of major axis)

  2. $\dfrac {1}{3}$ (length of major axis)

  3. $\dfrac {1}{4}$ (length of major axis)

  4. $\dfrac {2}{3}$ (length of major axis)


Correct Option: C

The length of latus rectum of $\dfrac {x^2}9+\dfrac {y^2}2=1$ is 

  1. $\dfrac 74$

  2. $\dfrac 34$

  3. $\dfrac 43$

  4. None.


Correct Option: C
Explanation:

The length of latus Rectum of $\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1$

is $\dfrac{2b^2}{a}$

Here $a=3\quad b=\sqrt 2$

$\Rightarrow \dfrac{2b^2}{a}=\dfrac{2(\sqrt 2)^2}{3}=\dfrac{2(2)}{3}=\dfrac 43$

An ellipse of semi-axis $a,b,$ slides between two perpendicular lines, then the locus of its foci is, (the two lines being taken  as the axes of coordinates)

  1. $(x^{2}+y^{2})(x^{2}y^{2}+b^{2})=4a^{2}x^{2}y^{2}$

  2. $(x^{2}+y^{2})(x^{2}y^{2}+b^{2})=4b^{2}x^{2}y^{2}$

  3. $(x^{2}-y^{2})(x^{2}y^{2}+b^{2})=4b^{2}x^{2}y^{2}$

  4. $(x^{2}-y^{2})(x^{2}y^{2}+b^{2})=4a^{2}x^{2}y^{2}$


Correct Option: A

If equation $(5x-1)^{2}+(5y-2)^{2}=(\lambda^{2}-2\lambda+1)(3x+4y-1)^{2}$ represents an ellipse, then $\lambda \in$

  1. $(0, 1)$

  2. $(0, 2)$

  3. $(1, 2)$

  4. $(0, 1)\cup (1, 2)$


Correct Option: B

The number of parabolas that can be drawn if two ends of the latus rectum are given 

  1. 1

  2. 2

  3. 4

  4. 3


Correct Option: B

The equation $\dfrac{{x}^{2}}{2-r}+\dfrac{{y}^{2}}{r-5}+1=0$ represents an ellipse if

  1. $r>1$

  2. $r>5$

  3. $2 < r< 5$

  4. $r<2$ or $r>5$


Correct Option: C