Tag: inverse of a matrix and linear equations
Questions Related to inverse of a matrix and linear equations
If $A^{-1}=\begin{bmatrix} 1 & -2 \ -2 & 2 \end{bmatrix}$, then what is $det(A)$ equal to ?
A square, non-singular matrix $A$ satifies $A^2 - A + 2I = 0$, then $A^{-1} = $
If matrix $A=\left| \begin{matrix} sin\theta & cosec\theta & 1 \ cosec\theta & 1 & sin\theta \ 1 & sin\theta & cosec\theta \end{matrix} \right| $ a non invertible matrix. then possible value of $\theta$ is-
If $A$ be a $3\times 3$ matrix and $I$ be the unit matrix of that order such that $\displaystyle A=A^{2}+I$ then $A^{-1}$ is equal to
If $A$ is a square matrix, $B$ is a singular matrix of same order, then for a positive integer $n,(A^{-1}BA)^n$ equals
If $A$ is a scalar matrix with scalar $k \neq 0$, of order $3$, then $kA^{-1}$ is:
If $A$ and $B$ are two non-zero square matrices of the same order such that the product $AB=0$, then
The inverse of a symmetric matrix (if it exists) is
Let $A=\begin{bmatrix} 1&0 \1 &1 \end{bmatrix}$ then
If $A$ and $B$ are $3\times 3$ matrices and $|A|\neq 0$, then