Tag: inverse of a matrix and linear equations
Questions Related to inverse of a matrix and linear equations
Let A and B be two non-singular matrices which commute. The $A^{-1}$, $B^{-1}$
$\mathrm{A}\mathrm{B}\mathrm{A^{-1}}$ $=\mathrm{X}$ then $\mathrm{B}^{2}=$
If $A = \begin{bmatrix} 2 & 3\ 5 & 1 \end{bmatrix},$ then find $A^{-1}$
If $A$ and $B$ are two non singular matrices of the same order such that ${ B }^{ r }=I$, for some positive integer $r>1$, then ${ A }^{ -1 }{ B }^{ r-1 }{ A }-{ A }^{ -1 }{ B }^{ -1 }A=$
If $\begin{pmatrix}1 & -tan \theta\ tan \theta & 1\end{pmatrix} \begin{pmatrix} 1 & tan \theta\ - tan \theta & 1\end{pmatrix}^{-1} = \begin{bmatrix} a& -b\ b & a\end{bmatrix}$, then
$A = \begin{bmatrix} 1& 0 & 0\0 & 1& 1\ 0 & -2 & 4\end{bmatrix}, I = \begin{bmatrix}1 & 0 & 0\ 0& 1 & 0\ 0 & 0 & 1\end{bmatrix}$ and $A^{-1} = \left [ \dfrac{1}{6} (A^2 + cA + dI) \right]$