Tag: inverse of a matrix and linear equations
Questions Related to inverse of a matrix and linear equations
If $A =\begin{bmatrix}a &b \c &d \end{bmatrix}$ such that $A$ satisfies the relation $A^2- (a + d)A = 0$, then inverse of $A$ is
Let the matrix A and B be defined as $A =\begin{bmatrix}3 &2 \ 2 &1 \end{bmatrix}$ and $B= \begin{bmatrix}3 &1 \ 7 &3 \end{bmatrix}$ then the value of Det.$(2A^9B^{-1})$, is
If $P$ is a two-rowed matrix satisfying $P^T = P^{-1}$, then $P$ can be
Let A be an invertible matrix then which of the following is/are true
If A and B are invertible matrices, which one of the following statement is/are correct
If $A=\begin{bmatrix} 1 & -2 \ 3 & 0 \end{bmatrix}$, $B=\begin{bmatrix} -1 & 4 \ 2 & 3 \end{bmatrix}$, and $ABC=\begin{bmatrix} 4 & 8 \ 3 & 7 \end{bmatrix}$, then $C$ equals
If $A _{3X3}$ and $ det A= 2$ then $det A^{-1}=$
The value of $(\mathrm{A}$dj $\mathrm{A})^{-1}$ is equal to
lf the value of a third order determinant is 11, then the value of the determinant of $A^{-1}=$
. $\mathrm{If}$ $\mathrm{A}$ is non-singular matrix such that $A^{2}=A^{-1}$ then $adjA=$