Given:Matrices are
$A=\left[ \begin{matrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \end{matrix} \right]$
$A{u} _{1}=\left[ \begin{matrix} 1 \\ 0 \\ 0 \end{matrix} \right]$ and
$A{u} _{2}=\left[ \begin{matrix} 0 \\ 1 \\ 0 \end{matrix} \right]$
To find:Matric ${u} _{1}+{u} _{2}$
Since both $A{u} _{1}$ and $A{u} _{2}$ are given, hence adding them, we get
$A{u} _{1}+A{u} _{2}=\left[ \begin{matrix} 1 \\ 0 \\ 0 \end{matrix} \right]+\left[ \begin{matrix} 0 \\ 1 \\ 0 \end{matrix} \right]$
$A\left({u} _{1}+{u} _{2}\right)=\left[ \begin{matrix} 1 \\ 1 \\ 0 \end{matrix} \right]$
Since,$A$ is a non-singular matrix,we have
$\left|A\right|\neq\,0$
Hence multiplying both sides by ${A}^{-1}$ from RHS we get
${A}^{-1}A\left({u} _{1}+{u} _{2}\right)={A}^{-1}\left[ \begin{matrix} 1 \\ 1 \\ 0 \end{matrix}\right]$
${u} _{1}+{u} _{2}={\left[ \begin{matrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \end{matrix} \right]}^{-1}\left[ \begin{matrix} 1 \\ 1 \\ 0 \end{matrix}\right]$ ..........$(1)$
Now, $\left|A\right|=\left|\begin{matrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \end{matrix} \right|$
$=1\left| \begin{matrix} 1 & 0 \\ 2 & 1 \end{matrix} \right|-0+0$(by expanding the determinant along row $1$)
$\Rightarrow\,\left|A\right|=1$
Now, co-factor matrix of $A$ (i.e., the matrix in which every element is replaced by corresponding co-factor)
$=\left[\begin{matrix} \left| \begin{matrix} 1 & 0 \\ 2 & 1 \end{matrix} \right| & -\left| \begin{matrix} 2 & 0 \\ 3 & 1 \end{matrix} \right| & \left| \begin{matrix} 2 & 1 \\ 3 & 2 \end{matrix} \right| \\ -\left| \begin{matrix} 0 & 0 \\ 2 & 1 \end{matrix} \right| & \left| \begin{matrix} 1 & 0 \\ 3 & 1 \end{matrix} \right| & -\left| \begin{matrix} 1 & 0 \\ 3 & 2 \end{matrix} \right| \\ \left| \begin{matrix} 0 & 0 \\ 1 & 0 \end{matrix} \right| & -\left| \begin{matrix} 1 & 0 \\ 2 & 0 \end{matrix} \right| & \left| \begin{matrix} 1 & 0 \\ 2 & 1 \end{matrix} \right| \end{matrix} \right]$
$=\left[\begin{matrix} 1 & -2 & 1 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{matrix} \right]$
$\therefore\,adj\left(A\right)={\left[\begin{matrix} 1 & -2 & 1 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{matrix} \right]}^{T}=\left[\begin{matrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 1 & -2 & 1 \end{matrix} \right]$
$\Rightarrow\,{A}^{-1}=\dfrac{adj\left(A\right)}{\left|A\right|}$
$=\left[\begin{matrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 1 & -2 & 1 \end{matrix} \right|\,\,\,\because\left|A\right|=1$
From eqn$(1)$ we get
${u} _{1}+{u} _{2}={\left[\begin{matrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \end{matrix} \right]}^{-1}\times\left[ \begin{matrix} 1 \\ 1 \\ 0 \end{matrix}\right]$
$=\left[\begin{matrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 1 & -2 & 1 \end{matrix} \right]\times\left[ \begin{matrix} 1 \\ 1 \\ 0 \end{matrix}\right]$
$=\left[ \begin{matrix} 1+0+0 \\ -2+1+0 \\ 1-2+0 \end{matrix}\right]$
$\therefore\,{u} _{1}+{u} _{2}=\left[ \begin{matrix} 1 \\ -1 \\ -1 \end{matrix}\right]$