Tag: inverse of a matrix and linear equations
Questions Related to inverse of a matrix and linear equations
Let $A$ be an $n\times n$ matrix such that $A^n=\alpha A,$ where $\alpha$ is a real number different from $1$ and $-1$. Then, the matrix $A+I _n$ is
Matrix $\begin{bmatrix}a & b &(a\alpha -b) \b & c & (b\alpha -c)\2 & 1 & 0\end{bmatrix}$ is non invertible if
If $\left |\begin{matrix}1 & -1 &x \ 1 & x & 1\ x & -1 & 1\end{matrix} \right|$ has no inverse, then the real value of $x$ can be is
If $A$ and $B$ are any two matrices such that $AB = 0$ and $A$ is non-singular, then
If the matrix $\begin{bmatrix} -1& 3 &2 \1&k&-3\1&4&5\end{bmatrix}$ has an inverse then the values of $k$.
The matrix $A=\begin{bmatrix}1&3&2\1&x-1&1\2&7&x-3\end{bmatrix}$ will have inverse for every real number x except for
If $A=\begin{bmatrix} 3 & -1+x & 2 \ 3 & -1 & x+2 \ x+3 & -1 & 2 \end{bmatrix}$ is singular matrix and $x\in [-5, -2]$ then x=?$
If $A=\begin{bmatrix} 0 & x & 16 \ x & 5 & 7 \ 0 & 9 & x \end{bmatrix}$ is singular, then the possible values of $x$ are
If $\omega\neq 1$ is a cube root of unity, then
$A=\begin{bmatrix}1+2\omega ^{100}+\omega ^{200}&\omega ^2 &1 \1 &1+\omega ^{101}+2\omega ^{202} &\omega \\omega & \omega ^2 &2+ \omega ^{100}+2\omega ^{200}\end{bmatrix}$
If $\displaystyle A=\begin{bmatrix} \frac{1}{2}\left ( e^{ix}+ e^{-ix}\right )&\frac{1}{2}\left ( e^{ix}- e^{-ix}\right ) \\frac{1}{2}\left ( e^{ix}- e^{-ix}\right ) &\frac{1}{2}\left ( e^{ix}+ e^{-ix}\right ) \end{bmatrix}$ then $A^{-1}$ exists