Tag: complex numbers
Questions Related to complex numbers
lf $a=\displaystyle \cos\frac{2\pi}{7}+i\sin\frac{2\pi}{7}, \alpha=a+a^{2}+a^{4}$ and $\beta=a^{3}+a^{5}+a^{6}$, then $\alpha, \beta$ are the roots of the equation
Suppose A is a complex number and $ n \in N, $ such that $A^{n} = (A + 1)^{n} =1, $ then the least value of $n$ is
If $1,$$\alpha _{1},\alpha _{2,} \alpha _{3},\alpha _{4}$ be the roots of $z^{5}-1=0$ and $\omega $ be an imaginary cube root of unity,
If $iz^4 + 1 = 0$, then z can take the value
The product of the values of $\displaystyle{\left[ {\cos {\pi \over 3} + i\sin {\pi \over 3}} \right]^{{3 \over 4}}}$ is
Number of integral values of n for which the quantity ${n+i}^{4}$ where ${i}^{2}=-1$, is an integer is
De Moivre's theorem
$(\cos\theta +i\sin \theta )=\cos n\theta $ if n is an integer and $\cos n\theta +i \sin n\theta $ is one of the values of $(\cos\theta +i\sin\theta )^{n}$, if n is a fraction.
Corollary : The q values of ($(\cos\theta +i\sin\theta )^{\frac{1}{q}}$ are obtained from
cos $\frac{2n\pi +\theta }{q}+i\sin\frac{2n\pi +\theta }{q}$ by putting n = 0, 1, 2, ..., (q - 1).
If $a = {\mathop{\rm cis}\nolimits} \alpha ,b = cis\beta ,c = cis\gamma $ then $\dfrac{{{a^3}{b^3}}}{{{c^2}}} = $
If $a=\cos { \left( \cfrac { 8\pi }{ 11 } \right) } +i\sin { \left( \cfrac { 8\pi }{ 11 } \right) } $, then $Re(a+{a}^{2}+{a}^{3}+{a}^{4}+{a}^{5})=$