Tag: complex numbers
Questions Related to complex numbers
If $z _ { 1 }$ and $z _ { 2 }$ be the $n ^ { th }$ roots of unity which subtend right angle at the origin. Then $n$ must be of the form
The value of the expression $\left( \omega -1 \right) \left( \omega -{ \omega }^{ 2 } \right) \left( \omega -{ \omega }^{ 3 } \right) ...\left( \omega -{ \omega }^{ n-1 } \right) ,$ where $\omega$ is the nth root of unity, is
If $1,\ \alpha _{1},\ \alpha _{2},\ \alpha _{3},\ \alpha _{4},\ \alpha _{5},\ \alpha _{6}$ are sevan $7^{th}$ root of unity then $|(3-\alpha _{1})(3-\alpha _{3})(3-\alpha _{5})|$ is
The maximum number of real root of the equation $\displaystyle x^{2n} - 1 = 0$ is
If $\alpha $ is a non-real root of $x^6=1$ then $\displaystyle \frac{\alpha ^5+\alpha ^3+\alpha +1}{\alpha ^2+1}=$
The roots of the equation $z^{5}+z^{4}+z^{3}+z^{2}+z+1=0$ are given by
If $\displaystyle \alpha $ is non-real and $\displaystyle \alpha=\sqrt[5]{1} ,$ then the value of $\displaystyle 2^{\left | 1+\alpha +\alpha ^{2}+\alpha ^{3}-\alpha ^{-1} -\alpha^{-2}\right |} $ is equal to
If $1,\omega ,\omega ^{2},....\omega ^{n-1}$ are $n,n^{th}$ roots ofunity then the value of $\left ( 13-\omega \right )\left ( 13-\omega ^{n-1} \right )$ equals
If $\displaystyle w\neq 1 $ is $n^{th}$ root of unity, then value of $\displaystyle \sum _{k=0}^{n-1}\left | z _{1}+w^{k}z _{2} \right |^{2} $ is
If $\omega$ be a complex $n ^ { t h }$ root of unity, then $\sum _ { r = 1 } ^ { n } ( a r + b ) \omega ^ { r - 1 }$ is