Tag: complex numbers
Questions Related to complex numbers
What is the real part of $(\sin x + i \cos x)^{3}$ where $i = \sqrt {-1}$?
-
$-\cos 3x$
-
$-\sin 3x$
-
$\sin 3x$
-
$\cos 3x$
If $(\cos \theta + i \sin \theta)(\cos 2 \theta
+ i \sin 2 \theta) ... (\cos n \theta + i \sin n \theta) = 1$, then the value of $\theta$ is , $m\in N$
-
$4m\pi$
-
$\displaystyle \frac{2m\pi}{n(n+1)}$
-
$\displaystyle \frac{4m\pi}{n(n+1)}$
-
$\displaystyle \frac{m\pi}{n(n+1)}$
Changing the above expression to Eular's form, we get
$e^{i\theta}e^{2i\theta}e^{3i\theta}...e^{in\theta})=1$
$e^{i(\theta+2\theta+3\theta+...n\theta}=1$
$e^{i\cfrac{n(n+1)}{2}\theta}=e^{2m\pi}$
Therefore, simplifying we get
$\dfrac{n(n+1)}{2}\theta=2m\pi$
$\theta=\dfrac{4m\pi}{n(n+1)}$
Statement 1: The product of all values of $(cos\alpha+i sin \alpha)^{\frac {3}{5}}$ is $cosn 3\alpha+i sin 3\alpha$.
Statement 2: The product of fifth roots of unity is 1.
-
Both the statements are true, and Statement 2 is the correct explanation for Statement 1.
-
Both the statements are true, but Statement 2 is not the correct explanation for Statement 1.
-
Statement 1 is true and Statement 2 is false.
-
Statement 1 is false and Statement 2 is true.
Let
$z=(cos\theta+isin\theta)^{3}$
Taking the fifth root, we get
$z^{\dfrac{1}{5}}=(cos\theta+isin\theta)^{\dfrac{3}{5}}=x$
Now there will be $5$, corresponding values of $x$.
Product if all the $5$ values will be
$x^{5}$
$=(cos\theta+isin\theta)^{3}$
$=cos3\theta+isin3\theta$ ... using De-Moivre's rule.
Now consider $x^{n}=1$
Hence if $n$ is odd, the nth roots of unity will be
$1,a _{1},\overline{a _{1}},a _{2},\overline{a _{2}}....$
Now $a _{1}.\overline{a _{1}}=|a _{1}|^{2}=1$
$a _{2}.\overline{a _{2}}=|a _{2}|^{2}=1$
:
:
Hence one root will be one, and the rest $n-1$ roots will occur in pair with its conjugate.
Hence product will be $1$.
Substituting, $n=5$, we get the roots as
$1,a _{1},\overline{a _{1}},a _{2},\overline{a _{2}}$
Hence product if all the roots will be $1$. And sum of all the roots will be $0$.
Both the statements are true, but Statement 2 is not the correct explanation for Statement 1.
If $z _1$ and $z _2$ are the complex roots of the equation $(x-3)^3+1 = 0$, then $z _1 + z _2$ equals to
-
1
-
3
-
5
-
7
$cis\left( \theta \right) =\cos { \theta } +i\sin { \theta } $
De Moivre's Theorem for fractional power:
${ \left( cis\theta \right) }^{ \frac { 1 }{ n } }=cis\left( \frac { 2k\Pi +\theta }{ n } \right) $
${ \left( x-3 \right) }^{ 3 }+1=0$
$\Longrightarrow x=3+{ \left( cis\left( \Pi \right) \right) }^{ \frac { 1 }{ 3 } }$
$x=3+{ \left( cis\left( \frac { 2k\Pi +\Pi }{ 3 } \right) \right) }$ ...{De Moivre's Theorem}
Where, $k=0,1,2$
for $k=0$,
$x _{ 1 }=3+cis\left( \frac { \Pi }{ 3 } \right)$
for $k=1$,
$x _{ 2 }=3+cis\left( \Pi \right) $
for $k=2,$
$x _{ 3 }=3+cis\left( \frac { 5\Pi }{ 3 } \right) $
$\Longrightarrow { x } _{ 1 }+{ x } _{ 3 }=6+cis\left( \frac { \Pi }{ 3 } \right) +cis\left( \frac { 5\Pi }{ 3 } \right) \ \Longrightarrow { x } _{ 1 }+{ x } _{ 3 }=7$
Ans: D
If $\left ( 2+z \right )^{6}+\left ( 2-z \right )^{6}=0$ and $\omega =\dfrac{2+z}{2-z}$
-
$\displaystyle \omega =e^{i}\tfrac{\left (2p+1 \right )\pi }{6},p=0,1,2,3,4,5$
-
$\displaystyle z=\frac{2\left ( \omega -1 \right )}{\omega +1}$
-
$\displaystyle \omega = ( -1 )^(\frac{1}{6})$
-
All of these
$\displaystyle { \left( 2+z \right) }^{ 6 }{ +\left( 2-z \right) }^{ 6 }=0\quad \quad & \quad w=\frac { 2+z }{ 2-z } $
$\displaystyle \Rightarrow { \left( \frac { 2+z }{ 2-z } \right) }^{ 6 }=-1\ \Rightarrow { w }^{ 6 }=-1$
$\displaystyle { \therefore \quad w=\left( -1 \right) }^{ \frac { 1 }{ 6 } }$
$\displaystyle \because \quad \frac { 2+z }{ 2-z } =w\ \Rightarrow 2\left( w-1 \right) =z\left( w+1 \right) $
$\displaystyle \therefore \quad z=\frac { 2\left( w-1 \right) }{ w+1 } $
$\displaystyle { \because \quad w=\left( -1 \right) }^{ \frac { 1 }{ 6 } }$
$\displaystyle w={ \left( \cos { \pi } +i\sin { \pi } \right) }^{ \frac { 1 }{ 6 } }=\cos { \left( \frac { 2p\pi +\pi }{ 6 } \right) +i } \sin { \left( \frac { 2p\pi +\pi }{ 6 } \right) } $ ..{De Moivre's Theorem}
Where$ p=0,1,2,3,4,5.$
$\displaystyle \Rightarrow w={ e }^{ i\frac { \left( 2p+1 \right) \pi }{ 6 } }$
Hence, option 'D' is correct.
Given $z$ is a complex number with modulus $1$. Then the equation $\dfrac{(1+ia)}{(1-ia)}$ = $z$ has
-
all roots real and distinct
-
two real and one imaginary
-
three roots real and one imaginary
-
one root real and three imaginary
$\displaystyle { \left( \frac { 1+ia }{ 1-ia } \right) }^{ 4 }=z\quad $ ...(1)
$\displaystyle & \quad \left| z \right| =1$
$\displaystyle z=cisA=\cos { A } +i\sin { A } $
Substitute $z$ in equation (1)
$\displaystyle { \left( \frac { 1+ia }{ 1-ia } \right) }={ cisA }^{ \frac { 1 }{ 4 } }=cis\frac { 2k\pi +A }{ 4 } $ ...{De Moivre's Theorem}
where $ k=0,1,2,3$
Let $\displaystyle B=\frac { 2k\pi +A }{ 4 } $
$\displaystyle \Longrightarrow ia=\frac { -1+cisB }{ 1+cisB } =\frac { \sin { \frac { B }{ 2 } \left( i\cos { \frac { B }{ 2 } } -\sin { \frac { B }{ 2 } } \right) } }{ \cos { \frac { B }{ 2 } \left( \cos { \frac { B }{ 2 } } +i\sin { \frac { B }{ 2 } } \right) } } $
$\displaystyle \Longrightarrow ia=\frac { i\sin { \frac { B }{ 2 } \left( \cos { \frac { B }{ 2 } } +i\sin { \frac { B }{ 2 } } \right) } }{ \cos { \frac { B }{ 2 } \left( \cos { \frac { B }{ 2 } } +i\sin { \frac { B }{ 2 } } \right) } } $
$\displaystyle \Longrightarrow a=\tan { \frac { B }{ 2 } } $
Therefore roots are real and distinct.
Ans: A
If n is a natural number$ \ge$ 2, such that $z^n = (z+ 1)^n$, then
-
roots of equation lie on a straight line parallel to the y-axis
-
roots of equation lie on a straight line parallel to the x-axis
-
sum of the real parts of the roots is -[(n-1)/2]
-
none of these
$\displaystyle { z }^{ n }={ \left( z+1 \right) }^{ n }$ where, $n\ge 2$ ...(1)
$\displaystyle \Rightarrow { \left( \frac { z+1 }{ z } \right) }^{ n }=1=\cos { 0 } +i\sin { 0 } $
$\displaystyle \Rightarrow \frac { z+1 }{ z } ={ \left( \cos { 0 } +i\sin { 0 } \right) }^{ \frac { 1 }{ n } }$
$\displaystyle \Rightarrow \frac { z+1 }{ z } =\cos { \frac { 2k\Pi }{ n } } +i\sin { \frac { 2k\Pi }{ n } } $ ...{De Moivre's Theorem}
$\displaystyle \Rightarrow z=\frac { -1 }{ 1-\cos { \frac { 2k\Pi }{ n } } -i\sin { \frac { 2k\Pi }{ n } } } \quad =\frac { -1 }{ 2\sin { \frac { k\Pi }{ n } \left( \sin { \frac { k\Pi }{ n } -i } \cos { \frac { k\Pi }{ n } } \right) } } =\frac { -1\left( \sin { \frac { k\Pi }{ n } +i } \cos { \frac { k\Pi }{ n } } \right) }{ 2\sin { \frac { k\Pi }{ n } } } $
$\displaystyle \Rightarrow z=\frac { -\left( 1+i\cot { \frac { k\Pi }{ n } } \right) }{ 2 } $
Where$ k=1,2,3,....,n-1 $ ..{Since at k=0, z is not defined}
$\because \quad Re\left( z \right) $ is constant.
Therfore roots of ${ z }^{ n }={ \left( z+1 \right) }^{ n }$ lie on straight line parellel to y-axis.
$\displaystyle \because \quad z=\frac { -\left( 1+i\cot { \frac { k\Pi }{ n } } \right) }{ 2 } $ and $k=1,2,3,....,(n-1)$
Sum of $\displaystyle Re\left( z \right) $= $-\frac { \left( n-1 \right) }{ 2 } $.
Ans: A,C
For positive integers $\displaystyle n _{1}$ and $\displaystyle n _{2}$ the value of the expression $\displaystyle (1+i)^{n _{1}}+(1+i^{3})^{n _{1}}+(1+i^{5})^{n _{2}}+(1+i^{2})^{n _{2}}$ where
$\displaystyle i= \sqrt{-1}$ is a real number iff
-
$\displaystyle n _{1}= n _{2}$
-
$\displaystyle n _{2}= n _{2}-1$
-
$\displaystyle n _{1}= n _{2}+1$
-
$\displaystyle \forall n _{1}$ and $\displaystyle n _{2}$
$(1+i)^{n _{1}} = $ $ ^{n _{1}}C _{0} + ^{n _{1}}C _{1} i +^{n _{1}}C _{2} i^2 + ......+^{n _{1}}C _{n _{1}} i^{n _{1}}$ --------(1)
If ${ x }^{ 6 }={ \left( 4-3i \right) }^{ 5 }$, then the product of all of its roots is (where $\displaystyle \theta =-\tan ^{ -1 }{ \frac { 3 }{ 4 } } $)
-
${ 5 }^{ 5 }\left( \cos { 5\theta } +i\sin { 5\theta } \right) $
-
$-{ 5 }^{ 5 }\left( \cos { 5\theta } +i\sin { 5\theta } \right) $
-
${ 5 }^{ 5 }\left( \cos { 5\theta } -i\sin { 5\theta } \right) $
-
$-{ 5 }^{ 5 }\left( \cos { 5\theta } -i\sin { 5\theta } \right) $
$\displaystyle { x }^{ 6 }={ \left( 4-3i \right) }^{ 5 }\Rightarrow { x }^{ 6 }={ 5 }^{ 6 }\left( \frac { 4 }{ 5 } -\frac { 3i }{ 5 } \right) ={ 5 }^{ 5 }{ \left( \cos { \theta } +i\sin { \theta } \right) }^{ 5 }$
If $C _{o},C _{1},C _{2}...C _{n}$ are the Binomial coefficient in the expansion of $\left ( 1+x \right )^{n}$ then which is not correct
-
$C _{0}-C _{2}+C _{4}-C _{6}+...=2\tfrac{n}{2}\cos \frac{n\pi }{4}$
-
$C _{1}-C _{3}+C _{5}+...=2\tfrac{n}{2}\sin \frac{n\pi }{4}$
-
$C _{1}+C _{5}+C _{9}+C _{13}+...=\tfrac{1}{2}\left ( 2^{n-1}+2\tfrac{n}{2}\sin \frac{n\pi }{4} \right )$
-
None of these
By Binomial theorem
${ \left( 1+x \right) }^{ n }={ C } _{ 0 }+{ C } _{ 1 }x+{ C } _{ 2 }{ x }^{ 2 }+{ C } _{ 3 }{ x }^{ \ 3 }+{ C } _{ 4 }{ x }^{ 4 }+...$ ...(1)
Substitute $x=i$ in equation (1), we get
$\Rightarrow { \left( 1+i \right) }^{ n }={ C } _{ 0 }+{ C } _{ 1 }i-{ C } _{ 2 }-{ C } _{ 3 }i+{ C } _{ 4 }+.....$ ...(2)
Substitute $x=-i$ in equation (1), we get
${ \left( 1-i \right) }^{ n }={ C } _{ 0 }-{ C } _{ 1 }i-{ C } _{ 2 }+{ C } _{ 3 }i+{ C } _{ 4 }+.....$ ...(3)
Adding (2) & (3), we have
$\Rightarrow 2\left( { C } _{ 0 }{ -C } _{ 2 }{ +C } _{ 4 }+.... \right) ={ \left( 1+i \right) }^{ n }+{ \left( 1-i \right) }^{ n }$
$\Rightarrow { C } _{ 0 }{ -C } _{ 2 }{ +C } _{ 4 }+....=\dfrac { { \left( 1+i \right) }^{ n }+{ \left( 1-i \right) }^{ n } }{ 2 } ={ 2 }^{ \dfrac { n }{ 2 } }\left( \dfrac { { \left( \cos { \dfrac { \pi }{ 4 } } +i\sin { \dfrac { \pi }{ 4 } } \right) }^{ n }+{ \left( \cos { \dfrac { \pi }{ 4 } } -i\sin { \dfrac { \pi }{ 4 } } \right) }^{ n } }{ 2 } \right) $
$\Rightarrow { C } _{ 0 }{ -C } _{ 2 }{ +C } _{ 4 }+....={ 2 }^{ \dfrac { n }{ 2 } }\left( \dfrac { \cos { \dfrac { n\pi }{ 4 } } +i\sin { \dfrac { n\pi }{ 4 } +\cos { \dfrac { n\pi }{ 4 } } -i\sin { \dfrac { n\pi }{ 4 } } } }{ 2 } \right) $
$\Rightarrow { C } _{ 0 }{ -C } _{ 2 }{ +C } _{ 4 }+....={ 2 }^{ \dfrac { n }{ 2 } }\cos { \dfrac { n\pi }{ 4 } } $
Subtracting (2) & (3), we have
$\Rightarrow 2i\left( { C } _{ 1 }{ -C } _{ 3 }{ +C } _{ 5 }+.... \right) ={ \left( 1+i \right) }^{ n }-{ \left( 1-i \right) }^{ n }$
$\Rightarrow { C } _{ 1 }{ -C } _{ 3 }{ +C } _{ 5 }+....=\dfrac { { \left( 1+i \right) }^{ n }-{ \left( 1-i \right) }^{ n } }{ 2i } ={ 2 }^{ \dfrac { n }{ 2 } }\left( \dfrac { { \left( \cos { \dfrac { \pi }{ 4 } } +i\sin { \dfrac { \pi }{ 4 } } \right) }^{ n }-{ \left( \cos { \dfrac { \pi }{ 4 } } -i\sin { \dfrac { \pi }{ 4 } } \right) }^{ n } }{ 2i } \right) $
$\Rightarrow { C } _{ 1 }{ -C } _{ 3 }{ +C } _{ 5 }+....={ 2 }^{ \dfrac { n }{ 2 } }\left( \dfrac { \cos { \dfrac { n\pi }{ 4 } } +i\sin { \dfrac { n\pi }{ 4 } -\cos { \dfrac { n\pi }{ 4 } } +i\sin { \dfrac { n\pi }{ 4 } } } }{ 2i } \right) $
$\Rightarrow { C } _{ 1 }{ -C } _{ 3 }{ +C } _{ 5 }+.....={ 2 }^{ \dfrac { n }{ 2 } }\sin { \dfrac { n\pi }{ 4 } } $ ...(4)
Substitute $x=1$ in equation (1), we get
$\Rightarrow { C } _{ 0 }+{ C } _{ 1 }{ +C } _{ 2 }+{ C } _{ 3 }+{ C } _{ 4 }+.....\quad ={ 2 }^{ n }$ ...(5)
Substitute $x=-1$ in equation (1), we have
$\ \Rightarrow { C } _{ 0 }{ -C } _{ 1 }{ +C } _{ 2 }-{ C } _{ 3 }+{ C } _{ 4 }+.....\quad =0$ ...(6)
Subtracting (5) & (6), we get
$\Rightarrow 2\left( { C } _{ 1 }+{ C } _{ 3 }+{ C } _{ 5 }+..... \right) ={ 2 }^{ n }$
$\Rightarrow { C } _{ 1 }+{ C } _{ 3 }+{ C } _{ 5 }+.....\quad ={ 2 }^{ n-1 }$ ...(7)
Adding (4) & (7), we get
$\Rightarrow 2\left( { C } _{ 1 }+{ C } _{ 5 }+{ C } _{ 9 }+..... \right) ={ 2 }^{ n-1 }+{ 2 }^{ \dfrac { n }{ 2 } }\sin { \dfrac { n\pi }{ 4 } } $
$\Rightarrow { C } _{ 1 }+{ C } _{ 5 }+{ C } _{ 9 }+.....=\dfrac { 1 }{ 2 } \left( { 2 }^{ n-1 }+{ 2 }^{ \dfrac { n }{ 2 } }\sin { \dfrac { n\pi }{ 4 } } \right) $
Hence, option 'D' is correct.