Tag: complex numbers
Questions Related to complex numbers
If n is an odd positive integer and $ I,\alpha _{1},\alpha _{2},....\alpha _{n-1}$ are the $n,n^{th}$ roots of unity, then $\left ( 3+\alpha ^{1} \right )\left ( 3+\alpha ^{2} \right )....\left ( 3+\alpha ^{n-1} \right )$ equals
$(1-\omega +\omega^{2})(1-\omega^{2}+\omega^{4})(1-\omega^{4}+\omega^{8})......$to 2n factors =
If $\alpha$ is the $n^{th}$ root of unity, then $1+2\alpha+3\alpha^{2}+...$ to $n$ terms is equal to
if $\displaystyle\ z _{\gamma }=\cos \frac{2\gamma \pi}{5}+i\sin \frac{2\gamma \pi}{5}=0$, $\displaystyle\ \gamma = 0,1,2,3,4.....$ then $\displaystyle\ z _{1}z _{2}z _{3}z _{4}z _{5}$ is equal to
If the fourth roots of unity are $\displaystyle\ z _{1},z _{2},z _{3},z _{4}$ then $\displaystyle\ z _{1}^{2}+z _{2}^{2}+z _{3}^{2}+z _{4}^{2}$ is equal to
If $a = cos \dfrac{2\pi}{7}+i sin\dfrac{2\pi}{7}$, then find the quadratic equation whose roots are $a = a + a^2 + a^4$ and $\beta = a^3 + a^5 + a^6$.
If $\displaystyle z=\cos \frac{8\pi }{11}+i\sin\frac{8\pi }{11},$ then Real $\displaystyle \left ( z+z^{2}+z^{3}+z^{4}+z^{5} \right )$ is
If $\displaystyle \omega $ is fifth root of unity, then $\displaystyle \log _2 \mid 1+\omega +\omega ^{2}+\omega ^{3}-\omega ^{-1}\mid $ is equal to
If $w$ be complex $n^{th}$ root of unity and $r$ is an integer not divisible by $n$, then the sum of the $r$th powers of the nth roots of unity is
If $1,\alpha,\alpha^ 2......\alpha^{n}$ are the $n^{th}$ roots of unity then $^nC _1+ ^nC _2.\alpha + ^nC _3.\alpha^2 ........+^nC _n.\alpha^{n}$ is equal to