Tag: complex numbers
Questions Related to complex numbers
Value of $\displaystyle sin \frac{\pi}{2n + 1} sin \frac{2 \pi}{2n + 1} sin \frac{3 \pi}{2n + 1} ..... sin \frac{n\pi}{2n + 1}$.
If $ 1,\alpha ,\alpha ^{2} .....\alpha ^{n-1}$ are n roots of unity then ,$1.\alpha .\alpha ^{2}....\alpha ^{n-1}$ equals
If $\displaystyle \alpha = \cos\frac{8\pi}{11}+i\sin\frac{8\pi }{11}$ then $\displaystyle Re(\alpha +\alpha^{2}+\alpha^{3}+\alpha^{4}+\alpha^{5})$ equals
If $\displaystyle \alpha $ be the $\displaystyle n^{th} $ root of unity then the sum of the series
$\displaystyle 1+2\alpha+3\alpha^{2}+...n\alpha ^{n-1}$ equals.
State true or false:
If $r$ is non-real and $r=\sqrt [ 5 ]{ 1 } $, then the value of $ { 2 }^{ \left| 1+r+{ r }^{ 2 }+{ r }^{ -2 }-{ r }^{ -1 } \right| }$ is equal to
If $\displaystyle \alpha _{1}, \alpha _{2}, \cdots \alpha _{100}$ are all the 100th roots of unity, then $\displaystyle \sum \sum \left ( \alpha _{i}\alpha _{j} \right )^{5}$ is $\displaystyle 1\leq i< j\leq 100$
The value of $\displaystyle \sum _{k= 1}^{6}\left ( \sin \frac{2\pi k}{7}-i\cos \frac{2\pi k}{7} \right )$ is
Simplify the expressions of the sums