Tag: complex numbers
Questions Related to complex numbers
Solutions of the equation $z^{7}-1=0$ are given by
Solve the equation $\displaystyle z^{n-1}=\bar{z},n\epsilon N.$
lf $z _{1},z _{2}$ are $n^{th}$ roots of unity which are ends of a line segment that subtends $\displaystyle \frac{\pi}{2}$ at the origin.
If $\alpha,\ \beta,\ \gamma$ and $\Delta $ are the roots of the equation $x^{4}-1=0$, then the value of $\displaystyle \frac{a\alpha+b\beta+c\gamma+d\Delta}{a\gamma+b\Delta +c\alpha+d\beta}+\frac{a\gamma+b\Delta +c\alpha+d\beta}{a\alpha+b\beta+c\gamma+d\Delta }$ is
The number of roots of the equation $z^{15}=1$ satisfying $|\arg(z)|<\pi/2$ is
The order of $-i$ in the multiplicative group of $4^{th}$ roots of unity is
lf 1, $a _{1},\ a _{2},...,\ a _{n-1}$ are $n^{th}$ roots of unity then $\displaystyle \frac{1}{1-a _{1}}+\frac{1}{1-a _{2}}+\ldots+\frac{1}{1-a _{n-1}}$ equals?
If $w \neq 1$ is $n^{th}$ root of unity, then value of $ \displaystyle \sum _{k=0}^{n-1} \left| z _{1} w^{k} z _{2} \right| ^{2}$ is
Let $z _1$ and $z _2$ be ${ n }^{ th }$ roots of unity which subtend a right angle at the origin. Then n must be of the form
If 1, ${ a } _{ 1 },{ a } _{ 2 },....{ a } _{ n-1 }$ are the nth roots of unity then
i) $\left( 1-{ a } _{ 1 } \right) \left( 1-{ a } _{ 2 } \right) \left( 1-{ a } _{ 3 } \right) ......\left( 1-{ a } _{ n-1 } \right) =n$
ii) $1+{ a } _{ 1 }+{ a } _{ 2 }+....+{ a } _{ n-1 }=0$
iii) $\dfrac { 1 }{ 2-{ a } _{ 1 } } +\dfrac { 1 }{ 2-{ a } _{ 2 } } +....+\dfrac { 1 }{ 2-{ a } _{ n-1 } } =\dfrac { \left( n-2 \right) { 2 }^{ n-1 }+1 }{ { 2 }^{ n }-1 } $