Tag: complex numbers

Questions Related to complex numbers

If $1,{\alpha _1},{\alpha _2}....{\alpha _8}$ are nine, ninth roots of unity (taken in counter-clock wises direction) then $\left| {\left( {2 - {\alpha _1}} \right)\left( {2 - {\alpha _3}} \right)\left( {2 - {\alpha _5}} \right)\left( {2 - {\alpha _7}} \right)} \right|$ is equal to

  1. $\sqrt {255} $

  2. $\sqrt {1023} $

  3. $\sqrt {511} $

  4. $\sqrt {15} $


Correct Option: C

Number of values of $z$ (real or complex) simultaneously satisfying the system of equations
$1+z+{z}^{2}+{z}^{3}+....+{z}^{17}=0$ and $1+z+{z}^{2}+{z}^{3}+.....+{z}^{13}=0$ is

  1. $1$

  2. $2$

  3. $3$

  4. $4$


Correct Option: D

If $1,{\alpha _1},{\alpha _2},{\alpha _3}$ are the fourth roots of unity, then the value of $\left( {1 + {\alpha _1}} \right)\left( {1 + {\alpha _2}} \right)\left( {1 + {\alpha _3}} \right)$ is equal to

  1. $-3$

  2. $-1$

  3. $0$

  4. $2$


Correct Option: C
Explanation:

Let $1,\alpha _1,\alpha _2,\alpha _3$ are the fourth rotts of unity.


We know that the fourth roots of unity are $1,i,-1,-i$


All these roots are got by solving equation $x=(1)^{\dfrac{1}{4}}$

By using demovire's theorem.

Now,

$(1+\alpha _1)(1+\alpha _2)(1+\alpha _3)$

$\Rightarrow$  $(1+i)(1+(-1))(1+(-i))$

$\Rightarrow$  $(1+i)(0)(1-i)$

$\Rightarrow$  $0$

If $n^{th}$ root of unity be $1,a _{1},a _{2},...a _{n-1}$, then $\displaystyle \sum^{n-1} _{r=1}\dfrac {1}{2+a _{r}}$ is equal to

  1. $\dfrac {n.2^{n-1}}{2^{n}-1}-1$

  2. $\dfrac {n(-2)^{n-1}}{(-2)^{n}-1}-1$

  3. $\dfrac {n(-2)^{n-1}}{1+(-2)^{n+1}}-\dfrac {1}{3}$

  4. $None\ of\ these$


Correct Option: A

Let $a^{k}$ where $k=0.1.2....2013$ are the $2014^{th}$ roots of unity. If $Z _{1}$ and $Z _{2}$ be any two complex number such that $|Z _{1}|=|Z _{2}|=\dfrac{1}{\sqrt{2014}}$, then the value of $\displaystyle \sum _{ k=0 }^{ 2013 }{ { \left| { Z } _{ 1 }+{ a }^{ k }{ Z } _{ 2 } \right|  }^{ 2 } } $ is equal to

  1. $4028$

  2. $0$

  3. $2$

  4. $2014$


Correct Option: A

If $x _{1},x _{2},x _{3}$ are three real solutions of the equations $x^{2\ell nx-1}+e^{1/9}=(1+e^{/9})(x^{\ell-0.5})$ none of them being unity. Find $x _{1}x _{2}x _{3}$:

  1. $e$

  2. $2$

  3. $e^{2}$

  4. $4$


Correct Option: A

If $1, a _1, a _2,......a _{n-1}$ are the n nth roots of unity, then?

  1. $n+1$

  2. $n$

  3. $n-1$

  4. None of these


Correct Option: A

If $z _{1}$ and $z _{2}$ be the $n^{th}$ roots of unity which subtend a right angle at the origin, then $n$  must be of the form

  1. $4k+1$

  2. $4k+2$

  3. $4k+3$

  4. $4k$


Correct Option: A

If $A=\begin{bmatrix} a & b\ 0 & a\end{bmatrix}$ is nth root of $I _2$, then choose the correct statements.

  1. If n is odd, $a=1$, $b=0$

  2. If n is odd, $a=-1, b=0$

  3. If n is even, $a=1, b=0$

  4. If n is even, $a=-1, b=0$


Correct Option: A

The value of $\displaystyle\ \alpha^{4n-1}+\alpha^{4n-3}, n\epsilon\mathbb{N}$ and $\displaystyle\ \alpha$ is a nonreal fourth root of unity is 

  1. $0$

  2. $-1$

  3. $3$

  4. none of these


Correct Option: A
Explanation:

$x^{4}=1$
$x^{2}=\pm1$
$x=\pm i$ and $x=\pm 1$
Hence
$\alpha^{4n-1}+\alpha^{4n-3}$
$=\alpha^{4n}[\alpha^{-1}+\alpha^{-3}]$
$=[\alpha^{-1}+\alpha^{-3}]$
$=\alpha^{-1}[1+\alpha^{-2}]$
$=\alpha^{-3}[\alpha^{2}+1]$
$=\alpha^{-3}[(\pm i)^{2}+1]$
$=0$