Tag: complex numbers
Questions Related to complex numbers
For ${ Z } _{ 1 }=\sqrt [ 6 ]{ \dfrac { 1-i }{ 1+i\sqrt { 3 } } } $, ${ Z } _{ 2 }=\sqrt [ 6 ]{ \dfrac { 1-i }{ \sqrt { 3 } +i } } $, ${ Z } _{ 3 }=\sqrt [ 6 ]{ \dfrac { 1+i }{ \sqrt { 3 } -i } } $ which of the following holds goods?
Given z is a complex number with modulus 1. Then the equation $\left[\dfrac{(1+ia)}{(1-ia)}\right]^4$ = z has
If $\sqrt{5 - 12i} + \sqrt{-5 - 12i} = z$, then principal value of arg z can be
The value of $\displaystyle { \left( \frac { 1+i }{ \sqrt { 2 } } \right) }^{ 8 }+{ \left( \frac { 1-i }{ \sqrt { 2 } } \right) }^{ 8 }$ is equal to
The number of solutions of equation $z^{10}-z^{5}+1=0$ are
If $\displaystyle z=1+\cos \frac{2\pi }{3}+i\sin \frac{2\pi }{3}$, then
Construct an equation whose roots are $n^{th}$ powers of the roots of the equation $\displaystyle x^{2}-2x\cos \theta +1= 0.$
If $z = \left(\displaystyle\frac{\sqrt3}{2} + \displaystyle\frac{i}{2}\right)^{2009}+\left(\displaystyle\frac{\sqrt3}{2} - \displaystyle\frac{i}{2}\right)^{2009}$, then
The roots of $\displaystyle \left ( -64a^{4} \right )^{\tfrac14}$ are
The value of $(iz+z^5+z^8)$ when $z=\dfrac{\sqrt{3}+i}{2}$ is?