Tag: complex numbers

Questions Related to complex numbers

For ${ Z } _{ 1 }=\sqrt [ 6 ]{ \dfrac { 1-i }{ 1+i\sqrt { 3 }  }  } $, ${ Z } _{ 2 }=\sqrt [ 6 ]{ \dfrac { 1-i }{ \sqrt { 3 } +i }  } $, ${ Z } _{ 3 }=\sqrt [ 6 ]{ \dfrac { 1+i }{ \sqrt { 3 } -i }  } $ which of the following holds goods?

  1. $\sum { { \left| { Z } _{ 1 } \right| }^{ 2 } } =\dfrac { 3 }{ 2 } $

  2. ${ \left| { Z } _{ 1 } \right| }^{ 4 }+{ \left| { Z } _{ 2 } \right| }^{ 4 }={ \left| { Z } _{ 3 } \right| }^{ -8 }$

  3. $\sum { { \left| { Z } _{ 1 } \right| }^{ 3 }+{ \left| { Z } _{ 2 } \right| }^{ 3 }={ \left| { Z } _{ 3 } \right| }^{ -6 } } $

  4. $\ \ \ { \left| { Z } _{ 1 } \right| }^{ 4 }+{ \left| { Z } _{ 2 } \right| }^{ 4 }={ \left| { Z } _{ 3 } \right| }^{ 8 }$


Correct Option: A

Given z is a complex number with modulus 1. Then the equation $\left[\dfrac{(1+ia)}{(1-ia)}\right]^4$ = z has

  1. all roots real and distinct

  2. two real and one imaginary

  3. three roots real and one imaginary

  4. one root real and three imaginary


Correct Option: A
Explanation:

$\displaystyle { \left( \frac { 1+ia }{ 1-ia }  \right)  }^{ 4 }=z\quad $         ...(1)
$\displaystyle & \quad \left| z \right| =1$
$\displaystyle z=cisA=\cos { A } +i\sin { A } $
substitute z in equation (1)
$\displaystyle { \left( \frac { 1+ia }{ 1-ia }  \right)  }={ cisA }^{ \frac { 1 }{ 4 }  }=cis\frac { 2k\pi +A }{ 4 } $       ...{De Moivre's Theorem}
where $k=0,1,2,3$

Let $\displaystyle B=\frac { 2k\pi +A }{ 4 } $

$\displaystyle \Longrightarrow ia=\frac { -1+cisB }{ 1+cisB } =\frac { \sin { \frac { B }{ 2 } \left( i\cos { \frac { B }{ 2 }  } -\sin { \frac { B }{ 2 }  }  \right)  }  }{ \cos { \frac { B }{ 2 } \left( \cos { \frac { B }{ 2 }  } +i\sin { \frac { B }{ 2 }  }  \right)  }  } $

$\displaystyle \Longrightarrow ia=\frac { i\sin { \frac { B }{ 2 } \left( \cos { \frac { B }{ 2 }  } +i\sin { \frac { B }{ 2 }  }  \right)  }  }{ \cos { \frac { B }{ 2 } \left( \cos { \frac { B }{ 2 }  } +i\sin { \frac { B }{ 2 }  }  \right)  }  } $

$\displaystyle \Longrightarrow a=\tan { \frac { B }{ 2 }  } $

Therefore roots are real and distinct.

Ans: A

If $\sqrt{5 - 12i} + \sqrt{-5 - 12i} = z$, then principal value of arg z can be 

  1. $-\displaystyle\frac{\pi}{4}$

  2. $\displaystyle\frac{\pi}{4}$

  3. $-\displaystyle\frac{3\pi}{4}$

  4. $\displaystyle\frac{3\pi}{4}$


Correct Option: A,B,C,D
Explanation:

Dividing and multiplying by $\sqrt{13}$
$=\sqrt{13}[(\dfrac{5}{13}-\dfrac{12i}{13})^{\dfrac{1}{2}}+(-\dfrac{5}{13}-\dfrac{12i}{13})^{\dfrac{1}{2}}]$
$=\sqrt{13}[e^{i\dfrac{-\theta}{2}}+e^{i\dfrac{\theta-\pi}{2}}]$
$=\sqrt{13}[cos\dfrac{\theta}{2}-isin\dfrac{\theta}{2}+sin\dfrac{\theta}{2}-icos\frac{\theta}{2}]$
$=\sqrt{13}[cos\dfrac{\theta}{2}+sin\dfrac{\theta}{2}-i(sin\dfrac{\theta}{2}+cos\dfrac{\theta}{2})]$
$=z$
Here $\theta=sin^{-1}(\dfrac{12}{13})$
Hence
$|Re(z)|=|Im(z)|$
Hence argument of $Z$ is in the form of $\dfrac{2n-1(\pi)}{4}$ $n\epsilon::Integers$

The value of $\displaystyle { \left( \frac { 1+i }{ \sqrt { 2 }  }  \right)  }^{ 8 }+{ \left( \frac { 1-i }{ \sqrt { 2 }  }  \right)  }^{ 8 }$ is equal to

  1. $4$

  2. $6$

  3. $8$

  4. $2$


Correct Option: D
Explanation:

We have $\displaystyle { \left( \frac { 1+i }{ \sqrt { 2 }  }  \right)  }^{ 8 }+{ \left( \frac { 1-i }{ \sqrt { 2 }  }  \right)  }^{ 8 }$


$\displaystyle={ \left[ \cos { \frac { \pi  }{ 4 }  } +i\sin { \frac { \pi  }{ 4 }  }  \right]  }^{ 8 }+{ \left[ \cos { \frac { \pi  }{ 4 }  } -i\sin { \frac { \pi  }{ 4 }  }  \right]  }^{ 8 }$


$=\cos { 2\pi  } +i\sin { 2\pi  } +\cos { 2\pi  } -i\sin { 2\pi  } $      [by de-moivre's theorem]

$=2\cos { 2\pi  } =2\left( 1 \right) =2$  

The number of solutions of equation $z^{10}-z^{5}+1=0$ are 

  1. only two solution

  2. No solution

  3. only five solution

  4. exactly 10


Correct Option: D
Explanation:

${ z }^{ 10 }-{ z }^{ 5 }+1=0$

Let ${ z }^{ 5 }=w$
$\Rightarrow { w }^{ 2 }-w+1=0$

$\Rightarrow w=\frac { 1\pm \sqrt { 3 }  }{ 2 } =\cos { \frac { \Pi  }{ 3 }  } \pm \sin { \frac { \Pi  }{ 3 }  } =cis\left( \pm \frac { \Pi  }{ 3 }  \right) $


$\Rightarrow { z }^{ 5 }=cis\left( \pm \frac { \Pi  }{ 3 }  \right) $

Case 1:
${ z }^{ 5 }=cis\left( \frac { \Pi  }{ 3 }  \right) $

$\Rightarrow z={ \left( cis\left( \frac { \Pi  }{ 3 }  \right)  \right)  }^{ \frac { 1 }{ 5 }  }=cis\left( \frac { 2k\Pi +\Pi  }{ 15 }  \right) \ $        ...{De Moivre's Theorem}

Where k=0,1,2,3,4.
Therefore number of solutions are 5.

Case 2:
${ z }^{ 5 }=cis\left( -\frac { \Pi  }{ 3 }  \right) $

$\Rightarrow z={ \left( cis\left( -\frac { \Pi  }{ 3 }  \right)  \right)  }^{ \frac { 1 }{ 5 }  }=cis\left( \frac { 2k\Pi -\Pi  }{ 15 }  \right) $       ...{De Moivre's Theorem}

Where k=0,1,2,3,4.
Therefore number of solutions are 5.

From case 1 & case 2 total number of solutions of equation ${ z }^{ 10 }-{ z }^{ 5 }+1=0$ are 10.

Ans: D

If $\displaystyle z=1+\cos \frac{2\pi }{3}+i\sin \frac{2\pi }{3}$, then

  1. $\displaystyle Re(z^{5})=\frac{\sqrt{3}}{2}$

  2. $\displaystyle Re(z^{5})=\frac{1}{2}$

  3. $\displaystyle Im(z^{5})=\frac{1}{2}$

  4. $\displaystyle Im(z^{5})=\frac{\sqrt{3}}{2}$


Correct Option: B
Explanation:

$z=1+\cos { \frac { 2\pi  }{ 3 }  } +i\sin { \frac { 2\pi  }{ 3 }  } =2\cos ^{ 2 }{ \frac { \pi  }{ 3 }  } +2i\sin { \frac { \pi  }{ 3 } \cos { \frac { \pi  }{ 3 }  }  } $

$\displaystyle \Rightarrow z=2\cos { \frac { \pi  }{ 3 }  } \left( \cos { \frac { \pi  }{ 3 }  } +i\sin { \frac { \pi  }{ 3 }  }  \right) =\cos { \frac { \pi  }{ 3 }  } +i\sin { \frac { \pi  }{ 3 }  } $

$\displaystyle \Rightarrow { z }^{ 5 }={ \left( \cos { \frac { \pi  }{ 3 }  } +i\sin { \frac { \pi  }{ 3 }  }  \right)  }^{ 5 }=\cos { \frac { 5\pi  }{ 3 }  } +i\sin { \frac { 5\pi  }{ 3 }  } $        ...{De Moivre's Theorem}
 
$\displaystyle \Rightarrow { z }^{ 5 }=\frac { 1-i\sqrt { 3 }  }{ 2 } $

$\displaystyle \therefore \quad Re\left( { z }^{ 5 } \right) =\frac { 1 }{ 2 } \quad & \quad Im\left( { z }^{ 5 } \right) =\frac { -\sqrt { 3 }  }{ 2 } $
Hence, option B is correct.

Construct an equation whose roots are $n^{th}$ powers of the roots of the equation $\displaystyle x^{2}-2x\cos \theta +1= 0.$

  1. $\displaystyle x^{2}-2n\cos n\theta x+1= 0$

  2. $\displaystyle x^{2}-2n\cos \theta x+1= 0$

  3. $\displaystyle x^{2}-2\cos n\theta x+1= 0$

  4. $\displaystyle x^{2}-2\cos ^{n}\theta x+1= 0$


Correct Option: C
Explanation:

We know, $\displaystyle \alpha = \cos \theta +i\sin \theta , \beta = \cos \theta -i\sin \theta $
$\displaystyle \alpha ^{n}= \cos n\theta +i\sin n\theta ,$
$\displaystyle \beta ^{n}= \cos n\theta -i\sin n\theta $
$\displaystyle S= 2\cos n\theta , P= 1 \therefore x^{2}-Sx+P= 0$
or $\displaystyle x^{2}-2\cos n\theta x+1= 0$ is the required equation.

Ans: C

If $z = \left(\displaystyle\frac{\sqrt3}{2} + \displaystyle\frac{i}{2}\right)^{2009}+\left(\displaystyle\frac{\sqrt3}{2} - \displaystyle\frac{i}{2}\right)^{2009}$, then 

  1. $Im(z) = 0$

  2. $Re(z) > 0$

  3. $Im(z) > 0$

  4. $Re(z) < 0, Im(z) > 0$


Correct Option: A
Explanation:

As we know that,
$\dfrac { \sqrt { 3 }  }{ 2 } +\dfrac { i }{ 2 } =\cos { \dfrac { \pi  }{ 6 }  } +i\sin { \dfrac { \pi  }{ 6 }  } $

and $\dfrac { \sqrt { 3 }  }{ 2 } -\dfrac { i }{ 2 } =\cos { \dfrac { \pi  }{ 6 }  } -i\sin { \dfrac { \pi  }{ 6 }  } $

$z=\left( \dfrac { \sqrt { 3 }  }{ 2 } +\dfrac { i }{ 2 }  \right) ^{ 2009 }+\left( \dfrac { \sqrt { 3 }  }{ 2 } -\dfrac { i }{ 2 }  \right) ^{ 2009 }$

$\Rightarrow z=\left( \cos { \dfrac { \pi  }{ 6 }  } +i\sin { \dfrac { \pi  }{ 6 }  }  \right) ^{ 2009 }+\left( \cos { \dfrac { \pi  }{ 6 }  } -i\sin { \dfrac { \pi  }{ 6 }  }  \right) ^{ 2009 }$         ......{ De Moivre's Theorem}

$\Rightarrow z=\cos { \dfrac { 2009\pi  }{ 6 }  } +i\sin { \dfrac { 2009\pi  }{ 6 }  } +\cos { \dfrac { 2009\pi  }{ 6 }  } -i\sin { \dfrac { 2009\pi  }{ 6 }  } $

$\Rightarrow z=2\cos { \dfrac { 2009\pi  }{ 6 }  } $


Therefore, $Im(z)=0$

Ans: B

The roots of $\displaystyle \left ( -64a^{4} \right )^{\tfrac14}$ are

  1. $\displaystyle \pm 2a\left ( 1\pm i \right ).$

  2. $\displaystyle \pm a\left ( 1\pm i \right ).$

  3. $\displaystyle \pm 2a\left ( 1\pm 2i \right ).$

  4. $\displaystyle \pm a\left ( 1\pm 2i \right ).$


Correct Option: A
Explanation:
$\displaystyle \left ( -64a^{4} \right )^{\tfrac14}= \left ( 2\sqrt{2} \right )a\left ( -1 \right )^{\tfrac14}$
We know that $\displaystyle -1= \cos \pi +i\sin \pi $
Now put $\displaystyle -1= r\cos \theta , 0= r\sin \theta $
$\displaystyle \therefore \left ( -64a^{4} \right )^{\tfrac14}= 2\sqrt{2}a.\left [ \cos \pi +i\sin \pi  \right ]^{\tfrac14}$
$\displaystyle = 2\sqrt{2a}\left [ \cos \left ( 2n\pi +\pi  \right )+i\sin \left ( 2n\pi +\pi  \right ) \right ]^{\tfrac14}$
$\displaystyle = 2\sqrt{2a}\left [ \cos \cfrac{2n\pi +\pi }{4}+i\sin \cfrac{2n\pi +\pi }{4} \right ],$
where n=0, 1, 2 and 3.Hence the required roots are
$\displaystyle 2\sqrt{2}a\left [ \cos \left ( \cfrac{\pi}{4} \right )+i\sin \left ( \cfrac{\pi}{4} \right ) \right ],$
$\displaystyle 2\sqrt{2}a\left [ \cos \left ( 3\cfrac{\pi}{4} \right )+i\sin \left ( 3\cfrac{\pi}{4} \right ) \right ],$
$\displaystyle 2\sqrt{2}a\left [ \cos \left ( 5\cfrac{\pi}{4} \right )+i\sin \left ( 5\cfrac{\pi}{4} \right ) \right ],$
$\displaystyle 2\sqrt{2}a\left [ \cos \left ( 7\cfrac{\pi}{4} \right )+i\sin \left ( 7\cfrac{\pi}{4} \right ) \right ],$
Thus the roots on putting the values are
$\displaystyle 2\sqrt{2}a\left ( \dfrac{1}{\sqrt{2}}+\dfrac{i}{\sqrt{2}} \right ), 2\sqrt{2}a\left (\dfrac{-1}{\sqrt{2}}+\dfrac{i}{\sqrt{2}} \right ),$
$\displaystyle 2\sqrt{2}a\left ( \dfrac{-1}{\sqrt{2}}-\dfrac{i}{\sqrt{2}} \right ), 2\sqrt{2}a\left (\dfrac{1}{\sqrt{2}}-\dfrac{i}{\sqrt{2}} \right ).$
Hence the roots are $\displaystyle \pm 2a\left ( 1\pm i \right ).$

Ans: $A$

The value of $(iz+z^5+z^8)$ when $z=\dfrac{\sqrt{3}+i}{2}$ is?

  1. $0$

  2. $-1$

  3. $\dfrac{-\sqrt{3}+i}{2}$

  4. $z$


Correct Option: C
Explanation:

$z=\dfrac{\sqrt{3}+i}{2}=\cos \dfrac{\pi}{6}+i\sin\dfrac{\pi}{6}=cis\dfrac{\pi}{6}$


$iz=icis\dfrac{\pi}{6}=cis\dfrac{\pi}{3}$

$z^5=cis\dfrac{5\pi}{6}$

$z^8=cis\dfrac{8\pi}{6}=-cis\dfrac{\pi}{3}$

$\implies \left(cis\dfrac{5\pi}{6}\right)=\dfrac{-\sqrt{3}+i}{2}$